A Case Study of an Optimal Detailed Analysis of a Standalone Photovoltaic/Battery System for Electricity Supply in Rural and Remote Areas

Author:

Zieba Falama Ruben12ORCID,Yaouba 23ORCID,Menga Francis-Daniel4ORCID,Hamda Soulouknga Marcel5ORCID,Kwefeu Mbakop Fabrice3ORCID,Ben Salah Chokri67ORCID

Affiliation:

1. Higher National School of Mines and Petroleum Industries, University of Maroua, P.O. Box 46, Maroua, Cameroon

2. Research Centre for Renewable Energy, Institute of Geological and Mining Research, P.O. Box 4110, Yaoundé, Cameroon

3. Department of Renewable Energy, National Advanced Polytechnic School, University of tMaroua, P.O. Box 46, Maroua, Cameroon

4. National Center for Technological Development, Yaoundé, Cameroon

5. Higher Teacher Training Technical College of Sarh, Sarh, Chad

6. University of Monastir, LASEE Laboratory, Monastir, Tunisia

7. University of Sousse, ISSAT of Sousse, Sousse, Tunisia

Abstract

This paper focused on a techno-economic study of a standalone PV/battery system for electrical energy supply. For a particular case study in Cameroon, the system is optimally designed thanks to a double-objective firefly optimization algorithm, based on a defined operational strategy. The two objective functions simulated simultaneously using FA are: the cost of energy (COE) function and the function defining the loss of power supply probability (LPSP). Different optimal configurations of the system have been obtained on the Pareto front with respect to their LPSP. For a total load demand of 20196.7 kWh, the lowest cost configuration with LPSP of 0% is composed by a number of 63 modules and a battery capacity of 370.295 kWh. The related COE is 0.2587 $/kWh, corresponding to a total net present cost of 87422 $. However with this configuration, the energy of batteries could not be able solely to respond to the energy demand for 3 continuous days. In that case, the increase of the PV power production (by increasing the number of PV modules) could allow to the batteries to fulfil this deficiency. But this solution increases the investment cost to up to 11.17%, considering a system with 80 PV modules. Another solution consists in reducing the size of the battery bank to avoid its unnecessary oversizing. In this case, the COE and the system investment cost reduce to up to 28.77% for 1 day batteries’ autonomy considered. The obtained results have demonstrated that the cost of a PV/battery system is mostly influenced by the batteries’ size, while the system reliability is mostly related to the PV size.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3