Induction of Resistance of Antagonistic Bacterium Burkholderia contaminans to Postharvest Botrytis cinerea in Rosa vinifera

Author:

Shen Fengying12,Liu Zigang2,Du Chenyang2,Yuan Junhai2,Wu Weigang2ORCID,Wei Dong12

Affiliation:

1. Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou City, Hebei Province, 075000, China

2. College of Agriculture and Forestry Science and Technology, North University of Hebei, Zhangjiakou City, Hebei Province, 075000, China

Abstract

In order to study the problem that grapes are vulnerable to microbial infection and decay during storage, a method based on antagonistic Burkholderia contaminans against postharvest Botrytis cinerea of Rosa vinifera was proposed in this paper. The method tested the resistance induction mechanism of Botrytis cinerea after harvest and determined the fruit decay rate treated by antagonistic Burkholderia contaminans. The results showed that the antagonistic bacterium B-1 had bacteriostatic effect on many common pathogens of fruits and vegetables to a certain extent, and the bacteriostatic range was wide. Among them, the inhibition rate of Fusarium moniliforme was 75.5% and that of Botrytis cinerea was 51.2%. After testing, it can be found that antagonistic bacteria have an inhibitory effect on pathogenic fungi and have an effect on phenylpropane metabolic pathway, reactive oxygen species metabolic pathway, and the activities of other resistance-related enzymes. Through comparison, it can be found that the antagonistic Burkholderia contaminans has a strong antibacterial mechanism against Botrytis cinerea of rose grape after harvest. The fruit treated with antagonistic B Burkholderia B-1 has significantly reduced the decay rate and increased the activity of antibacterial active protein.

Funder

start-up fund for doctoral research of high-level talents of Hebei North University

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3