Untargeted Metabolomic Profiling Using UHPLC-QTOF/MS Reveals Metabolic Alterations Associated with Autism

Author:

Liang Yujie12ORCID,Ke Xiaoyin13,Xiao Zhou1,Zhang Ying1,Chen Yangxia1,Li Yingyuan1,Wang Zhonglei1,Lin Ling1,Yao Paul1ORCID,Lu Jianping14ORCID

Affiliation:

1. Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Key Laboratory for Psychological Healthcare & Shenzhen Institute of Mental Health, Shenzhen, China

2. Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China

3. Affiliated Shenzhen Clinical College of Psychiatry, Jining Medical University, China

4. Department of Medicine, Shenzhen University, Shenzhen, China

Abstract

Autism spectrum disorder (ASD) is a clinical spectrum of neurodevelopment disorder characterized by deficits in social communication and social interaction along with repetitive/stereotyped behaviors. The current diagnosis for autism relies entirely on clinical evaluation and has many limitations. In this study, we aim to elucidate the potential mechanism behind autism and establish a series of potential biomarkers for diagnosis. Here, we established an ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry- (UHPLC-QTOF/MS-) based metabonomic approach to discriminate the metabolic modifications between the cohort of autism patients and the healthy subjects. UHPLC-QTOF/MS analysis revealed that 24 of the identified potential biomarkers were primarily involved in amino acid or lipid metabolism and the tryptophan kynurenine pathway. The combination of nicotinamide, anthranilic acid, D-neopterin, and 7,8-dihydroneopterin allows for discrimination between ASD patients and controls, which were validated in an independent autism case-control cohort. The results indicated that UHPLC-QTOF/MS-based metabolomics is capable of rapidly profiling autism metabolites and is a promising technique for the discovery of potential biomarkers related to autism.

Funder

Shenzhen Double Chain Grant

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3