Molecular Networking-Based Metabolome, In Vitro Antidiabetic and Anti-Inflammatory Effects of Breonadia salicina (Vahl) Hepper & J.R.I. Wood

Author:

Tlhapi Dorcas1ORCID,Ramaite Isaiah1ORCID,Anokwuru Chinedu2,van Ree Teunis1ORCID

Affiliation:

1. Department of Chemistry, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa

2. Department of Basic Sciences, School of Science and Technology, Babcock University, Ilishan Remo 121103, Nigeria

Abstract

Breonadia salicina (Vahl) Hepper & J.R.I. Wood is widely distributed throughout Africa. It is used ethnobotanically to treat various diseases. However, the metabolic profile of the Breonadia species is not well characterized and the metabolites that are responsible for the bioactivity of this plant remain unknown. Therefore, there is a need to determine the phytochemical and bioactivity profile to identify metabolites that contribute to the antidiabetic, anti-inflammatory and antiproliferation activity, including the genotoxicity and cytotoxic effects, of Breonadia salicina. The study is aimed at exploring the metabolomic profile antidiabetic, anti-inflammatory and antiproliferation activity, as well as the genotoxicity and cytotoxicity effects, of constituents of B. salicina. The compounds in the B. salicina extract were analyzed by ultra-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS), and the resultant data were further analyzed using a molecular networking approach. The crude stem bark and root extracts showed the highest antidiabetic activity against α-amylase at the lowest test concentration of 62.5 µg/mL, with 74.53 ± 0.74% and 79.1 ± 1.5% inhibition, respectively. However, the crude stem bark and root extracts showed the highest antidiabetic activity against α-glucosidase at the lowest test concentration of 31.3 µg/mL, with 98.20 ± 0.15% and 97.98 ± 0.22% inhibition, respectively. The crude methanol leaf extract showed a decrease in the nitrite concentration at the highest concentration of 200 µg/mL, with cell viability of 90.34 ± 2.21%, thus showing anti-inflammatory activity. No samples showed significant cytotoxic effects at a concentration of 10 µg/mL against HeLa cells. Furthermore, a molecular network of Breonadia species using UPLC-QTOF-MS with negative mode electrospray ionization showed the presence of organic oxygen compounds, lipids, benzenoids, phenylpropanoids and polyketides. These compound classes were differentially distributed in the three different plant parts, indicating the chemical differences between the stem bark, root and leaf extracts of B. salicina. Therefore, the identified compounds may contribute to the antidiabetic and anti-inflammatory activity of Breonadia salicina. The stem bark, root and leaf extracts of B. salicina yielded thirteen compounds identified for the first time in this plant, offering a promising avenue for the discovery of new lead drugs for the treatment of diabetes and inflammation. The use of molecular networking produced a detailed phytochemical overview of this Breonadia species. The results reported in this study show the importance of searching for bioactive compounds from Breonadia salicina and provide new insights into the phytochemical characterization and bioactivity of different plant parts of Breonadia salicina.

Publisher

MDPI AG

Reference41 articles.

1. Assessment of genetic diversity in the endangered populations of Breonadia salicina (Rubiaceae) growing in The Kingdom of Saudi Arabia using inter-simple sequence repeat markers;Gaafar;BMC Genet.,2014

2. A revision of the tribe Cephalantheae (Rubiaceae);Ridsdale;Blumea Biodivers. Evol. Biogeogr. Plants,1976

3. Antifungal activity and cytotoxicity of isolated compounds from leaves of Breonadia salicina;Mahlo;J. Ethnopharmcol.,2013

4. The anti-diarrhoeal properties of Breonadia salicina, Syzygium cordatum and Ozoroa sphaerocarpa when used in combination in Swazi traditional medicine;Sibandze;J. Ethnopharm.,2010

5. In vitro antitrypanosomal activity of Breonadia salicina on Trypanosoma brucei brucei;Ali;Int. J. Pharma Sci. Res.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3