Passenger Flow Prediction Using Smart Card Data from Connected Bus System Based on Interpretable XGBoost

Author:

Zou Liang12,Shu Sisi1,Lin Xiang1,Lin Kaisheng1,Zhu Jiasong12,Li Linchao12ORCID

Affiliation:

1. College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China

2. Institute of Urban Smart Transportation & Safety Maintenance, Shenzhen University, Shenzhen 518060, China

Abstract

Bus passenger flow prediction is a critical component of advanced transportation information system for public traffic management, control, and dispatch. With the development of artificial intelligence, many previous studies attempted to apply machine learning models to extract comprehensive correlations from transit networks to improve passenger flow prediction accuracy, given that the variety and volume of traffic data have been easily obtained. The passenger flow on a station is highly affected by various factors such as the previous time step, peak hours or nonpeak hours, and extracting the key features from the data is essential for a passenger flow prediction model. Although the neural networks, k -nearest neighbor, and some deep learning models have been adopted to mine the temporal correlations of the passenger flow data, the lack of interpretability of the influenced variables is still a big problem. Classical tree-based models can mine the correlations between variables and rank the importance of each variable. In this study, we presented a method to extract passenger flow of different routes on the station and implemented a XGBoost model to find the contributions of variables to the prediction of passenger flow. Comparing to benchmark models, the proposed model can reach state-of-the-art prediction accuracy and computational efficiency on the real-world dataset. Moreover, the XGBoost model can interpret the predicted results. It can be seen that period is the most important variable for the passenger flow prediction, and so the management of buses during peak hours should be improved.

Funder

Guangdong Science and Technology Department

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3