Research on Forecast of Rail Traffic Flow Based on ARIMA Model

Author:

Liu Shu Ying,Liu Shuo,Tian Ye,Sun Quan Long,Tang Yu Yang

Abstract

Abstract With the rapid economic development, subway-based rail transit is spreading all over the country, and efficient prediction of rail passenger flow is the key to alleviating traffic pressure. In view of the time-series characteristics of subway passenger flow data, the author uses the simulation results to show that the ARIMA model has higher accuracy and better effect in predicting the rail transit flow.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference5 articles.

1. Prediction of railway freight volume based on LSTM network [J];Zhaolan;Acta railway Sinica,2020

2. Empirical analysis of consumer price index in Qingdao Based on ARIMA model [J];Shu;Journal of Lanzhou University of Arts and Sciences (NATURAL SCIENCE EDITION),2020

3. Analysis and prediction of Shaanxi GDP Based on ARIMA model [J];Fangfang;Industrial innovation research,2020

4. Network Traffic Prediction Model Based on Auto-regressive Moving Average[J];Xu;Journal of Networks,2014

5. Short term forecast of international cargo throughput of Shanghai airport based on product season ARIMA model [J];Hongxiu;China strategic emerging industries,2016

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3