Affiliation:
1. School of Marxism, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
2. Business School of International Medicine, China Pharmaceutical University, Nanjing 210009, China
Abstract
Aiming at the problem that the road traffic flow in intelligent city is unevenly distributed in time and space, difficult to predict, and prone to traffic congestion, combined with pattern recognition and big data mining technology, this paper proposes a research method to analyze and mine the daily travel patterns of urban vehicles. This paper proposes a WND-LSTM model, which mainly includes data preprocessing, data modelling, and model implementation, to analyze the similarity of travel patterns in seasonal changes. Combining the data mining results with the data mining results, the daily travel model of road traffic vehicles in intelligent city is established. The results of the case study showed that the WND-LSTM model outperformed ARIMA (88.48%), LR (65.79%), SVR (70.46%), KNN (68.21%), SAEs (66.95%), GRU (68.43%), and LSTM (70.41%) in MAPE, respectively, with an average accuracy improvement of 71.25% (MAPE of 0.651%).
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献