Selection of key features for PM2.5 prediction using a wavelet model and RBF-LSTM
Author:
Funder
Ministry of Science and Technology, Taiwan
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence
Link
http://link.springer.com/content/pdf/10.1007/s10489-020-02031-5.pdf
Reference69 articles.
1. Abbasimehr H, Shabani M, Yousefi M (2020) An optimized model using LSTM network for demand forecasting. Comput Indust Eng 143:106435
2. Baur D, Saisana M, Schulze N (2004) Modelling the effects of meteorological variables on ozone concentration—a quantile regression approach. Atmos Environ 38:4689–4699
3. Biancofiore F, Busilacchio M, Verdecchia M, Tomassetti B, Aruffo E, Bianco S, Carlo PD (2017) Recursive neural network model for analysis and forecast of PM10 and PM2.5. Atmospheric Pollut Res 8(4):652–659
4. Boubaker H, Raza SA (2017) A wavelet analysis of mean and volatility spillovers between oil and BRICS stock markets. Energy Econ 64:105–117
5. Cai M, Yin Y, Xie M (2009) Prediction of hourly air pollutant concentrations near urban arterials using artificial neural network approach. Transp Res Part D: Transp Environ 14(1):32–41
Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. BWO-BiLSTM & CNN composite model for prediction of atmospheric particulate matter mass concentration;Atmospheric Pollution Research;2024-11
2. Universal Transfer Framework for Urban Spatiotemporal Knowledge Based on Radial Basis Function;IEEE Transactions on Artificial Intelligence;2024-09
3. A hybrid model for enhanced forecasting of PM2.5 spatiotemporal concentrations with high resolution and accuracy;Environmental Pollution;2024-08
4. Enhancing Air Quality Prediction with an Adaptive PSO-Optimized CNN-Bi-LSTM Model;Applied Sciences;2024-07-02
5. Understanding the Disparities of PM2.5 Air Pollution in Urban Areas via Deep Support Vector Regression;Environmental Science & Technology;2024-05-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3