Affiliation:
1. North China University of Water Resources and Electric Power, Zhengzhou 450046, China
2. Yellow River Institute of Hydraulic Research, Zhengzhou 450003, China
3. China Power Ecology-Environmental Group Co., Ltd., Shenzhen 518100, China
Abstract
With the change of the seismic parameter zoning map of China (GB 18306-2015), the seismic grade of reservoir dams in some areas had changed. At the same time, the standard for seismic design of hydraulic structures (GB 51247-2018) also put forward new requirements for the seismic calculation of reservoir dams. In order to ensure the safe operation of reservoir dams, it is necessary to review the seismic safety based on the finite element numerical simulation technology. Taking the retaining dam section of a gravity dam as an example, a finite element model of the retaining dam section was established, the corresponding calculation and analysis of ground motion were carried out using the mode decomposition response spectrum method, and the seismic safety evaluation of the retaining dam section was carried out according to the calculation results. The results show the following: (1) after considering the effect of hydrodynamic pressure, the natural frequency of the dam body has been significantly reduced, and the first-order natural frequency has been reduced by about 10%; (2) in addition to the local tensile stress at the dam heel, the rest of the vertical stress on the foundation surface of the retaining dam section is compressive stress, and the length of the tensile stress is less than the distance from the dam heel to the curtain center line, which met the requirements; (3) the antisliding stability safety factor of the retaining dam section is greater than the design value in the specification and meets the safety requirements; and (4) the seismic safety of the retaining dam section meets the standard requirements, and the seismic grade is evaluated as grade A.
Funder
Open Research Fund of Jiangxi Hydraulic Safety Engineering Technology Research Center
Subject
General Earth and Planetary Sciences
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献