Computing of Low Shear Stress-Driven Endothelial Gene Network Involved in Early Stages of Atherosclerotic Process

Author:

Vozzi Federico1ORCID,Campolo Jonica2ORCID,Cozzi Lorena3ORCID,Politano Gianfranco4ORCID,Di Carlo Stefano4ORCID,Rial Michela1,Domenici Claudio1,Parodi Oberdan1ORCID

Affiliation:

1. CNR Institute of Clinical Physiology, Pisa, Italy

2. CNR Institute of Clinical Physiology, Milan, Italy

3. Genetic Laboratory, Niguarda Hospital, Milan, Italy

4. Department of Control and Computer Engineering, Politecnico di Torino, Italy

Abstract

Background. In the pathogenesis of atherosclerosis, a central role is represented by endothelial inflammation with influx of chemokine-mediated leukocytes in the vascular wall. Aim of this study was to analyze the effect of different shear stresses on endothelial gene expression and compute gene network involved in atherosclerotic disease, in particular to homeostasis, inflammatory cell migration, and apoptotic processes.Methods. HUVECs were subjected to shear stress of 1, 5, and 10 dyne/cm2in a Flow Bioreactor for 24 hours to compare gene expression modulation. Total RNA was analyzed by Affymetrix technology and the expression of two specific genes (CXCR4 and ICAM-1) was validated by RT-PCR. To highlight possible regulations between genes and as further validation, a bioinformatics analysis was performed.Results. At low shear stress (1 dyne/cm2) we observed the following: (a) strong upregulation of CXCR4; (b) mild upregulation of Caspase-8; (c) mild downregulation of ICAM-1; (d) marked downexpression of TNFAIP3. Bioinformatics analysis showed the presence of network composed by 59 new interactors (14 transcription factors and 45 microRNAs) appearing strongly related to shear stress.Conclusions. The significant modulation of these genes at low shear stress and their close relationships through transcription factors and microRNAs suggest that all may promote an initial inflamed endothelial cell phenotype, favoring the atherosclerotic disease.

Funder

ARTreat European Project

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3