Noncoherent Low-Frequency Ultrasonic Communication System with Optimum Symbol Length

Author:

Jeon Kwang Myung1,Kim Hong Kook1,Lee Myung J.2

Affiliation:

1. School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea

2. Department of Electrical and Computer Engineering, City University of New York (CUNY), 140th Street, New York, NY 10017, USA

Abstract

A noncoherent low-frequency ultrasonic (LFU) communication system is proposed for near-field communication using commercial off-the-shelf (COTS) speakers and microphones. Since the LFU communication channel is known to be a frequency-selective characteristic, the proposed system is basically designed by differential phase-shift keying (DPSK) modulation with forward error correction. In addition, automatic gain control of the carrier frequency band over the LFU communication channel is proposed. Then, in order to optimize the symbol length of the proposed LFU communication system under a realistic aerial acoustic channel, a propagation model of the LFU communication channel is proposed by incorporating aerial acoustic attenuation. The performance of the proposed LFU communication system is demonstrated on two different tasks: bit error rate (BER) measurement and successful transmission rate (STR) comparison with Google Tone for various distances between the transmitter and the receiver. Consequently, the proposed method can operate without a bit error at a distance of 8 m under various noise conditions with sound pressure level of 80 dB. Moreover, the proposed method achieves higher STR than Google Tone on a task of URL transmission using two laptops.

Funder

National Research Foundation of Korea

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. User-Aware Audio Marker Using Low Frequency Ultrasonic Object Detection and Communication for Augmented Reality;Applied Sciences;2019-05-16

2. Local Synchronization of Web Applications with Audio Markings;Proceedings of the 22nd Brazilian Symposium on Multimedia and the Web;2016-11-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3