User-Aware Audio Marker Using Low Frequency Ultrasonic Object Detection and Communication for Augmented Reality

Author:

Jeon Kwang MyungORCID,Chun Chan Jun,Kim Hong KookORCID,Lee Myung J.

Abstract

In augmented reality (AR), audio markers can be alternatives to image markers for rendering virtual objects when an AR device camera fails to identify the image marker due to lighting conditions and/or the distance between the marker and device. However, conventional audio markers simply broadcast a rendering queue to anonymous devices, making it difficult to provide specific virtual objects of interest to the user. To overcome this limitation without relying on camera-based sensing, we propose a user-aware audio marker system using low frequency ultrasonic signal processing. The proposed system detects users who stay within the marker using ultrasonic-based object detection, and then it uses ultrasonic communication based on windowed differential phase shift keying modulation in order to send a rendering queue only to those users near the marker. Since the proposed system uses commercial microphones and speakers, conventional telecommunication systems can be employed to deliver the audio markers. The performance of the proposed audio marker system is evaluated in terms of object detection accuracy and communication robustness. First, the object detection accuracy of the proposed system is compared with that of a pyroelectric infrared (PIR) sensor-based system in indoor environments, and it is shown that the proposed system achieves a lower equal error rate than the PIR sensor-based system. Next, the successful transmission rate of the proposed system is measured for various distances and azimuths under noisy conditions, and it is also shown that the proposed audio marker system can successfully operate up to approximately 4 m without any transmission errors, even with 70 dBSPL ambient noise.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3