Conflict and Sensitivity Analysis of Articulated Vehicle Lateral Stability Based on Single-Track Model

Author:

Peng Dengzhi12ORCID,Fang Kekui3,Kuang Jianjie12,Hassan Mohamed A.124,Tan Gangfeng125ORCID

Affiliation:

1. Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China

2. School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China

3. Hubei Center for Quality Inspection of Special Purpose Vehicles, Suizhou 441300, China

4. Automotive and Tractors Engineering Department, Minia University, El-Minia 61519, Egypt

5. Suizhou-WUT Industry Research Institute, Suizhou 441300, China

Abstract

Lateral stability is quite essential for the vehicle. For the vehicle with an articulated steering system, the vehicle load and steering system performance is quite different from the passenger car with the Ackman steering system. To investigate the influence of the tire characteristics and vehicle parameters on lateral stability, a single-track dynamic model is established based on the vehicle dynamic theory. The accuracy of the built model is validated by the field test result. The investigated parameters include the tire cornering stiffness, vehicle load, wheelbase, and speed. Based on the snaking steering maneuver, the lateral stability criteria including the yaw rate, vehicle sideslip angle, tire sideslip angle, and lateral force are calculated and compared. The sensitivity analysis of the tire and vehicle parameters on the lateral stability indicators is initiated. The results demonstrated that the parameters that affect the lateral vehicle stability the most are the load on the rear part and the tire cornering stiffness. The findings also lay a foundation for the optimization of the vehicle’s lateral stability.

Funder

Ministry of Education of the People's Republic of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3