Coordination Control of Active Steering and Direct Yaw Control for the Articulated Steering Vehicle

Author:

Huang Bin12,Yuan Zhijun3,Peng Dengzhi14ORCID,Wei Xiaoxu12ORCID,Wang Yongsheng5

Affiliation:

1. Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China

2. School of Automotive Engineering, Wuhan University of Technology, Wuhan 430063, China

3. Guangxi Automobile Group Co. Ltd., Liuzhou 545007, China

4. Dongfeng Off-Road Vehicle Co. Ltd., Shiyan 442013, China

5. School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China

Abstract

Lateral stability is vital to vehicle handling stability and traffic safety. It is also a crucial factor for the path-tracking ability of the vehicle in the intelligent transportation system (ITS). Most of the research focuses on vehicles with an Ackerman steering system. The ASV (articulated steering vehicle) has a lower steering radius. Thus, it is widely used in some special vehicles, such as mining and construction vehicles. The ASV has weaker lateral stability than the vehicle with an Ackerman steering system. To improve the stability of an ASV, the nonlinear lateral dynamic model is established and validated by field test. With the lateral dynamic model, the steering characteristic of the ASV is analyzed. Based on the stability criteria analysis, the vehicle sideslip angle and angular velocity phase portrait are chosen as the stability indicator. An integrated AASS (active articulated steering system) DYC (direct yaw control) controller based on the adaptive MPC (model predictive control) method is designed according to the track on the phase plane. The double lane-change and 0.7 Hz sine with dwell maneuver are initiated based on the integrated vehicle dynamic model. The results suggest that the provided controller has a better stability performance than the current antiwindup PID control algorithm. It lays a good foundation for the vehicle safety and path tracking of ASV in the ITS.

Funder

Ministry of Education of the People’s Republic of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3