Multiple Time-Varying Formation of Networked Heterogeneous Robotic Systems via Estimator-Based Hierarchical Cooperative Algorithms

Author:

Ge Ming-Feng1ORCID,Liang Chang-Duo1ORCID,Zhan Xi-Sheng2ORCID,Chen Chao-Yang345ORCID,Xu Guanghui6,Chen Jie7ORCID

Affiliation:

1. School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China

2. Department of Control Science and Engineering, Hubei Normal University, Huangshi 435002, China

3. School of Information and Electrical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China

4. Center for Polymer Studies, Boston University, Boston, MA 02215, USA

5. Department of Physics, Boston University, Boston, MA 02215, USA

6. School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China

7. School of Science, Hubei University of Technology, Wuhan 430068, China

Abstract

This paper investigates both the time-varying formation and multiple time-varying formation tracking problems of networked heterogeneous robotic systems (NHRSs) with parameter uncertainties and external disturbances in the task space. Each robot inside can be either redundant or nonredundant. Several novel estimator-based hierarchical cooperative (EBHC) algorithms are designed to achieve both the tracking task and the possible preset subtasks for redundant robots. Besides, the designed estimator algorithms guarantee that each robot can obtain the accurate information of their corresponding leaders. By employing Lyapunov stability and input-to-state stability, sufficient conditions on the asymptotic stability of the error closed-loop system are derived. Finally, two simulation examples are presented to verify the effectiveness of the proposed algorithms.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3