Frequency Dependence of C-V Characteristics of MOS Capacitors Containing Nanosized High-κ Ta2O5 Dielectrics

Author:

Novkovski Nenad12ORCID,Atanassova Elena3

Affiliation:

1. Institute of Physics, Faculty of Natural Sciences and Mathematics, University “Ss. Cyril and Methodius”, Arhimedova 3, 1000 Skopje, Macedonia

2. Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts, Krste Misirkov 2, 1000 Skopje, Macedonia

3. Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia, Bulgaria

Abstract

Capacitance of metal–insulator–Si structures containing high permittivity dielectric exhibits complicated behaviour when voltage and frequency dependencies are studied. From our study on metal (Al, Au, W)–Ta2O5/SiO2–Si structures, we identify serial C-R measurement mode to be more convenient for use than the parallel one usually used in characterization of similar structures. Strong frequency dependence that is not due to real variations in the dielectric permittivity of the layers is observed. Very high capacitance at low frequencies is due to the leakage in Ta2O5 layer. We found that the above observation is mainly due to different leakage current mechanisms in the two different layers composing the stack. The effect is highly dependent on the applied voltage, since the leakage currents are strongly nonlinear functions of the electric field in the layers. Additionally, at low frequencies, transition currents influence the measured value of the capacitance. From the capacitance measurements several parameters are extracted, such as capacitance in accumulation, effective dielectric constant, and oxide charges. Extracting parameters of the studied structures by standard methods in the case of high/interfacial layer stacks can lead to substantial errors. Some cases demonstrating these deficiencies of the methods are presented and solutions for obtaining better results are proposed.

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3