Convergence Study of Minimizing the Nonconvex Total Delay Using the Lane-Based Optimization Method for Signal-Controlled Junctions

Author:

Wong C. K.1,Lee Y. Y.1

Affiliation:

1. Department of Civil and Architectural Engineering, City University of Hong Kong, Tat Chee Road, Kowloon, Hong Kong

Abstract

This paper presents a 2D convergence density criterion for minimizing the total junction delay at isolated junctions in the lane-based optimization framework. The lane-based method integrates the design of lane markings and signal settings for traffic movements in a unified framework. The problem of delay minimization is formulated as a Binary Mix Integer Non Linear Program (BMINLP). A cutting plane algorithm can be applied to solve this difficult BMINLP problem by adding hyperplanes sequentially until sufficient numbers of planes are created in the form of solution constraints to replicate the original nonlinear surface in the solution space. A set of constraints is set up to ensure the feasibility and safety of the resultant optimized lane markings and signal settings. The main difficulty to solve this high-dimension nonlinear nonconvex delay minimization problem using cutting plane algorithm is the requirement of substantial computational efforts to reach a good-quality solution while approximating the nonlinear solution space. A new stopping criterion is proposed by monitoring a 2D convergence density to obtain a converged solution. A numerical example is given to demonstrate the effectiveness of the proposed methodology. The cutting-plane algorithm producing an effective signal design will become more computationally attractive with adopting the proposed stopping criterion.

Funder

City University of Hong Kong

Publisher

Hindawi Limited

Subject

Modelling and Simulation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3