Stochastic C-GNet Environment Modeling and Path Planning Optimization in a Narrow and Long Space

Author:

Yang Jianjian1ORCID,Tang Zhiwei1,Wang Xiaolin1,Wang Zirui1,Yin Biaojun1,Wu Miao1

Affiliation:

1. School of Mechanical Electronic and Information Engineering, China University of Mining and Technology, Beijing 100083, China

Abstract

This study proposes a novel method of optimal path planning in stochastic constraint network scenarios. We present a dynamic stochastic grid network model containing semienclosed narrow and long constraint information according to the unstructured environment of an underground or mine tunnel. This novel environment modeling (stochastic constraint grid network) computes the most likely global path in terms of a defined minimum traffic cost for a roadheader in such unstructured environments. Designing high-dimensional constraint vector and traffic cost in nodes and arcs based on two- and three-dimensional terrain elevation data in a grid network, this study considers the walking and space constraints of a roadheader to construct the network topology for the traffic cost value weights. The improved algorithm of variation self-adapting particle swarm optimization is proposed to optimize the regional path. The experimental results both in the simulation and in the actual test model settings illustrate the performance of the described approach, where a hybrid, centralized-distributed modeling method with path planning capabilities is used.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference21 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Path Correction of the Boom Road-Header in Coal Mining Based on State Estimation;Mathematical Problems in Engineering;2019-10-23

2. Research on Fault Diagnosis Method Based on RSAPSO-DBN;Lecture Notes in Computer Science;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3