Controller Parameters Tuning Based on Transfer Matrix Method for Multibody Systems

Author:

Hendy Hossam1,Rui Xiaoting1,Zhou Qinbo1,Khalil Mostafa1

Affiliation:

1. Institute of Launch Dynamics, Nanjing University of Science and Technology, Nanjing 210094, China

Abstract

Transfer matrix method for multibody systems (MS-TMM) is a rife method to multi-rigid-flexible-body systems dynamics model deduction due to that there are no needs to establish the global dynamics equations of the system. Its basic idea is transferring a state vector between the body input(s) and output(s); this idea is close to the linear theories in control analysis and design. In this paper, three controllers’ parameters tuning techniques for the proposed system model using MS-TMM are utilized; one technique is applied to get the stability regions via the frequency response of MS-TMM derived model. Another technique considers a classical PID controller design through the analysis of step input response of the system, and the last technique can be applied in both time and frequency domains if the model has a known mathematical model. A car suspension system is considered to represent modeling and tuning problems. In-depth study of MS-TMM with control techniques and defining the controllers’ parameters stability regions provide an opportunity to formulate a relationship between MS-TMM and control design for novel control applications due to the powerful strength of MS-TMM dealing with more complex problems of the controlled multibody systems.

Funder

Doctoral Program of Higher Education of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparative Analysis of Attitude Control Systems for Small Satellites Based on Linear Controllers;2022 18th International Computer Engineering Conference (ICENCO);2022-12-29

2. Steady State Response of Linear Time Invariant Systems Modeledby Multibond Graphs;Applied Sciences;2021-02-15

3. PID vs. Backstepping Control for Cooperative Quadrotors Unmanned Aerial Vehicles;IOP Conference Series: Materials Science and Engineering;2019-09-01

4. References;Transfer Matrix Method for Multibody Systems;2018-10-12

5. Computationally efficient dynamic modeling of robot manipulators with multiple flexible-links using acceleration-based discrete time transfer matrix method;Robotics and Computer-Integrated Manufacturing;2018-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3