A Method of Image Restoration for Distortion of Object in Water-Air Cross-Media

Author:

Gao Yuhe1,Jia Jishen12,Cai Lei3ORCID,Zhou Meng1,Chai Haojie3,Jia Jinze4

Affiliation:

1. School of Mathematical Sciences, Henan Institute of Science and Technology, Xinxiang 453003, China

2. Henan Digital Agriculture Engineering Technology Research Center, Xinxiang 453003, China

3. School of Artificial Intelligence, Henan Institute of Science and Technology, Xinxiang 453003, China

4. School of Management, Henan Institute of Technology, Xinxiang 453003, China

Abstract

Uneven water-air media distribution or irregular liquid flow can cause changes in light propagation, leading to blurring and distortion of the extracted image, which presents a challenge for object recognition accuracy. To address these issues, this paper proposes a repair network to correct object image distortion in water-air cross-media. Firstly, convolutional combination performs feature extraction on water-air cross-media images, which retains the same features at the same scale and marks feature points with large differences. Then, an attention correction module for geometric lines is proposed to correct geometric lines in water-air cross-media images by comparing and sensing the marked feature points with large differences and utilizing the line similarity in positive and negative samples. Finally, the blurring artifact elimination module eliminates artifacts caused by image blurring and geometric line correction by using multiscale fusion of individual U-Net information streams. This completes the image restoration of object distortion under water-air cross-media. The proposed method is feasible and effective for restoring aberrated objects in water-air cross-media environments, with numerous experiments conducted on water-air cross-media image datasets.

Funder

Science and Technology Tackling Project of Henan Province

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3