Fiber Bragg Grating Accelerometer and Its Application to Measure Wheel‐Rail Excitation

Author:

Li JianzhiORCID,Shen BohaoORCID,Zhang Haoran,Song Ying

Abstract

This research aims to develop and validate a fiber Bragg grating (FBG) accelerometer, designed with a bearing and flexure hinge structure, to accurately measure medium‐ and high‐frequency vibrations caused by wheel‐rail excitation. The structural parameters of the accelerometer are optimized through theoretical mechanics analysis, and its dynamic characteristics are verified by experimental vibration testing and compared with the finite element simulated results. Key findings reveal that the proposed sensor has a wide operational frequency range of 10–1200 Hz and a high acceleration sensitivity of 3 pm/m·s−2, in addition to excellent linearity and repeatability. Moreover, the sensor demonstrates immunity to temperature variations, making it suitable for use in fluctuating temperature environments. Laboratory model experiment tests of high‐speed train tracks show that the FBG accelerometer effectively identifies medium‐ to high‐frequency vibration signals caused by wheel‐rail excitation, corroborated by traditional piezoelectric accelerometers. The results confirm the sensor’s ability to capture vertical axle box vibration acceleration (ABVA) and its potential for assessing axle box structural dynamics in high‐speed railway applications.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3