Shortest Path Routing Protocol Based on the Vertical Angle for Underwater Acoustic Networks

Author:

Li Meiju123,Du Xiujuan13ORCID,Liu Xin13,Li Chong13

Affiliation:

1. Computer Department, Qinghai Normal University, Xining 810008, China

2. College of Physics and Electronic Information Engineering, Qinghai Nationalities University, Xining 810007, China

3. Key Laboratory of the Internet of Things of Qinghai Province, Xining 810008, China

Abstract

Underwater Acoustic Networks (UANs) use acoustic communication. UANs are characterized by narrow bandwidth, long delay, limited energy, high bit error rate, and dynamic network topology. Therefore, UANs call for energy-efficient and latency-minimized routing protocol. In this paper, the shortest path routing protocol based on the vertical angle (SPRVA) is proposed. In SPRVA, the forwarding node determines the best next-hop according to main priority. When the main priorities of candidate nodes are the same, the alternative priority is used. The main priority is denoted by the residual energy and angle between propagation direction and depth direction, and the alternative priority is indicated by the link quality. SPRVA selects the node along the depth direction with more residual energy and better link quality as the best next-hop. In addition, a recovery algorithm is designed to avoid nodes in void areas as forwarding nodes. Simulation results show that SPRVA improves energy efficiency and decreases end-to-end communication delay.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3