A Novel Model of Cancer-Induced Peripheral Neuropathy and the Role of TRPA1 in Pain Transduction

Author:

Maqboul Ahmad12ORCID,Elsadek Bakheet2ORCID

Affiliation:

1. Department of Anesthesiology and Operative Intensive Care Medicine, Campuses Mitte and Virchow-Klinikum, Charité–University of Medicine Berlin, Berlin, Germany

2. Department of Biochemistry, College of Pharmacy, Al-Azhar University, Asyût, Egypt

Abstract

Background. Models of cancer-induced neuropathy are designed by injecting cancer cells near the peripheral nerves. The interference of tissue-resident immune cells does not allow a direct contact with nerve fibres which affects the tumor microenvironment and the invasion process. Methods. Anaplastic tumor-1 (AT-1) cells were inoculated within the sciatic nerves (SNs) of male Copenhagen rats. Lumbar dorsal root ganglia (DRGs) and the SNs were collected on days 3, 7, 14, and 21. SN tissues were examined for morphological changes and DRG tissues for immunofluorescence, electrophoretic tendency, and mRNA quantification. Hypersensitivities to cold, mechanical, and thermal stimuli were determined. HC-030031, a selective TRPA1 antagonist, was used to treat cold allodynia. Results. Nociception thresholds were identified on day 6. Immunofluorescent micrographs showed overexpression of TRPA1 on days 7 and 14 and of CGRP on day 14 until day 21. Both TRPA1 and CGRP were coexpressed on the same cells. Immunoblots exhibited an increase in TRPA1 expression on day 14. TRPA1 mRNA underwent an increase on day 7 (normalized to 18S). Injection of HC-030031 transiently reversed the cold allodynia. Conclusion. A novel and a promising model of cancer-induced neuropathy was established, and the role of TRPA1 and CGRP in pain transduction was examined.

Funder

Ministry of Higher Education, Egypt

Publisher

Hindawi Limited

Subject

Anesthesiology and Pain Medicine,Neurology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3