The Mechanisms of Action of Botulinum Toxin Type A in Nociceptive and Neuropathic Pathways in Cancer Pain

Author:

Reyes-Long Samuel1ORCID,Alfaro-Rodríguez Alfonso2ORCID,Cortes-Altamirano Jose Luis2ORCID,Lara-Padilla Eleazar1ORCID,Herrera-Maria Elizabeth3ORCID,Romero-Morelos Pablo3ORCID,Salcedo Mauricio4,Bandala Cindy1ORCID

Affiliation:

1. Escuela Superior de Medicina, Instituto Politecnico Nacional, Ciudad de Mexico, Mexico

2. Division de Neurociencias, Instituto Nacional de Rehabilitacion, Secretaria de Salud, Ciudad de Mexico, Mexico

3. Universidad del Valle de Ecatepec, Estado de Mexico, Mexico

4. Laboratorio de Oncologia Genomica, Unidad de Investigacion Medica en Enfermedades Oncologicas, Hospital de Oncologia, CMN-SXXI, IMSS, Ciudad de Mexico, Mexico

Abstract

Background: Botulinum toxin type A (BoNT-A) is widely employed for cosmetic purposes and in the treatment of certain diseases such as strabismus, hemifacial spasm and focal dystonia among others. BoNT-A effect mainly acts at the muscular level by inhibiting the release of acetylcholine at presynaptic levels consequently blocking the action potential in the neuromuscular junction. Despite the great progress in approval and pharmaceutical usage, improvement in displacing BoNT-A to other pathologies has remained very limited. Patients under diagnosis of several types of cancer experience pain in a myriad of ways; it can be experienced as hyperalgesia or allodynia, and the severity of the pain depends, to some degree, on the place where the tumor is located. Pain relief in patients diagnosed with cancer is not always optimal, and as the disease progresses, transition to more aggressive drugs, like opioids is sometimes unavoidable. In recent years BoNT-A employment in cancer has been explored, as well as an antinociceptive drug; experiments in neuropathic, inflammatory and acute pain have been carried out in animal models and humans. Although its mechanism has not been fully known, evidence has shown that BoNT-A inhibits the secretion of pain mediators (substance P, Glutamate, and calcitonin gene related protein) from the nerve endings and dorsal root ganglion, impacting directly on the nociceptive transmission through the anterolateral and trigeminothalamic systems. Aim: The study aimed to collect available literature regarding molecular, physiological and neurobiological evidence of BoNT-A in cancer patients suffering from acute, neuropathic and inflammatory pain in order to identify possible mechanisms of action in which the BoNT-A could impact positively in pain treatment. Conclusion: BoNT-A could be an important neo-adjuvant and coadjuvant in the treatment of several types of cancer, to diminish pro-tumor activity and secondary pain.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3