Affiliation:
1. Electrical-Electronics Engineering, Faculty of Engineering, Selcuk University, Konya, Turkey
2. Computer Engineering, Faculty of Engineering, Selcuk University, Konya, Turkey
Abstract
This paper offers a hybrid approach that uses the artificial bee colony (ABC) algorithm for feature selection and support vector machines for classification. The purpose of this paper is to test the effect of elimination of the unimportant and obsolete features of the datasets on the success of the classification, using the SVM classifier. The developed approach conventionally used in liver diseases and diabetes diagnostics, which are commonly observed and reduce the quality of life, is developed. For the diagnosis of these diseases, hepatitis, liver disorders and diabetes datasets from the UCI database were used, and the proposed system reached a classification accuracies of 94.92%, 74.81%, and 79.29%, respectively. For these datasets, the classification accuracies were obtained by the help of the 10-fold cross-validation method. The results show that the performance of the method is highly successful compared to other results attained and seems very promising for pattern recognition applications.
Funder
Selcuk University Scientific Research Projects Coordinatorship
Subject
General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献