Aerodynamics Optimization of a Ducted Coaxial Rotor in Forward Flight Using Orthogonal Test Design

Author:

Jiang Yuening12ORCID,Li Hai12,Jia Hongguang13

Affiliation:

1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Chang Guang Satellite Technology Co., Ltd., Changchun 130000, China

Abstract

To investigate the aerodynamic complexities involved in the combination of freestream and propeller’s suction flow field of ducted coaxial rotors system in forward flight, an orthogonal L16(43) test design has been applied to optimize the design parameters including forward speed, pitch angle, and axial spacing between rotors. Multiblock grids and Multiple Frame of Reference (MFR) method are adopted for calculating aerodynamic performance of the system, hover characteristic was compared with experimental data obtained from the test stand, and the thrust performance is well predicted for various rotor spacing and a range of rpm. This solution approach is developed for the analytical prediction of forward flight and the simulation results indicated that the design parameters influenced lift, drag, and torque reduced in the order: wind speed > rotor spacing > pitch angle, wind speed > pitch angle, and rotor spacing > wind speed > pitch angle, respectively. The optimal rotor spacing and pitch angle were determined to maximize the aerodynamic performance considering high lift, low drag, and trimmed torque.

Funder

Chinese Academy of Sciences

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3