Aerodynamic Characteristics of a Micro Multi-Rotor Aircraft with 12 Rotors Considering the Horizontal Wind Disturbance

Author:

Lei YaoORCID,Yang Wenjie,Wang Hengda

Abstract

Wind disturbance posed difficulties for the stability of the micro air vehicles (MAVs) with attitude variation. In this paper, the aerodynamic performance of a MAV with six coaxial rotor pairs considering the horizontal wind is investigated by both experiments and numerical simulations. First, the effect of the horizontal wind on the multi-rotor aircraft is analyzed in detail. Then, low-speed wind tunnel tests were performed to obtain the thrust and power consumption and the aerodynamic performance of the multi-rotor aircraft (l/D = 1.2 and h/D = 0.19) with the rotational speed of 1500–2300 r/min in the horizontal wind ranged from 0 to 5 m/s. Finally, the distribution of streamline, the pressure of the blade tip, and the velocity and the vortices in the flow field of a multi-rotor aircraft with horizontal wind disturbance, were simulated and studied using the computational fluid dynamics (CFD) method. Through the comparison of experimental results and simulation results, it can be seen that the horizontal wind disturbance will increase power consumption to weaken the aerodynamic performance at higher rotor speeds. However, larger thrust and better hover performance are obtained at lower rotational speeds with good wind resistance. Additionally, due to the mutual induction between rotor wakes, the interactions of downwash flows become more intense at higher rotational speeds or larger wind speeds where the vortexes at the blade tip deformed and moved along with the wind.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3