Aircraft Trajectory Prediction Based on Bayesian Optimised Temporal Convolutional Network–Bidirectional Gated Recurrent Unit Hybrid Neural Network

Author:

Huang Jin1,Ding Weijie1ORCID

Affiliation:

1. Air Traffic Management College, Civil Aviation Flight University of China, Guanghan, Sichuan 618307, China

Abstract

Efficient and accurate flight trajectory prediction is a key technology for promoting intelligent and informative air traffic management and improving the operational capabilities and predictability of air traffic. To address the problems in extracting hidden information from historical trajectory information, the approach must accurately select high-dimensional features related to the prediction target and overcome the short-term memory of the time series. Herein, we present a novel trajectory prediction model based on a dual-self-attentive (DSA)-temporal convolutional network (TCN)-bidirectional gated recurrent unit (BiGRU) neural network. In this model, the TCN provides highly stable training, high parallelism, and a flexible perceptual domain. The self-attentive mechanism of the TCN structure can focus on features that contribute the most to the output. After the TCN, the BiGRU network combined with the self-attentive mechanism is used to further bidirectionally mine the connections between the features and outputs of the trajectory sequence, and a Bayesian algorithm is used to optimise the hyperparameters of the model for optimal performance. A comparison and validation based on current well-known neural network models (i.e., CNN, TCN, GRU, and their variants) shows that the DSA-TCN-BiGRU model based on Bayesian hyperparameter optimisation has the best performance. Therefore, the improved predictive model is applicable and valuable, providing a basis for future decision trajectory-based operations.

Funder

Institute of New Technologies for Civil Aviation Communications Navigation Surveillance

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Reference39 articles.

1. Aircraft trajectory prediction and synchronization for air traffic management applications

2. LSTM-based deep learning model for civil aircraft position and attitude prediction approach;K. Yang

3. Bayesian spatio-temporal graph transformer network (b-star) for multi-aircraft trajectory prediction;Y. Pang;Knowledge-Based Systems,2022

4. Short-Term Trajectory Prediction Based on Hyperparametric Optimisation and a Dual Attention Mechanism

5. Research on multi-objective constraint-based trajectory prediction method for descending segments [J/OL];Z. Fan

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3