Coal Mine Gas Safety Evaluation Based on Adaptive Weighted Least Squares Support Vector Machine and Improved Dempster–Shafer Evidence Theory

Author:

Sun Zhenming1ORCID,Li Dong2ORCID

Affiliation:

1. School of Energy and Mining Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China

2. Beijing Longruan Technologies, Beijing 100190, China

Abstract

Gas safety evaluation has always been vital for coal mine safety management. To enhance the accuracy of coal mine gas safety evaluation results, a new gas safety evaluation model is proposed based on the adaptive weighted least squares support vector machine (AWLS-SVM) and improved Dempster–Shafer (D-S) evidence theory. The AWLS-SVM is used to calculate the sensor value at the evaluation time, and the D-S evidence theory is used to evaluate the safety status. First, the sensor data of gas concentration, wind speed, dust, and temperature were obtained from the coal mine safety monitoring system, and the prediction results of sensor data are obtained using the AWLS-SVM; hence, the prediction results would be the input of the evaluation model. Second, because the basic probability assignment (BPA) function is the basis of D-S evidence theory calculation, the BPA function of each sensor is determined using the posterior probability modeling method, and the similarity is introduced for optimization. Then, regarding the problem of fusion failure in D-S evidence theory when fusing high-conflict evidence, using the idea of assigning weights, the importance of each evidence is allocated to weaken the effect of conflicting evidence on the evaluation results. To prevent the loss of the effective information of the original evidence followed by modifying the evidence source, a conflict allocation coefficient is introduced based on fusion rules. Ultimately, taking Qing Gang Ping coal mine located in Shaanxi province as the study area, a gas safety evaluation example analysis is performed for the assessment model developed in this paper. The results indicate that the similarity measures can effectively eliminate high-conflict evidence sources. Moreover, the accuracy of D-S evidence theory based on enhanced fusion rules is improved compared to the D-S evidence theory in terms of the modified evidence sources and the original D-S evidence theory. Since more sensors are fused, the evaluation results have higher accuracy. Furthermore, the multisensor data evaluation results are enhanced compared to the single sensor evaluation outcomes.

Funder

National Key Research and Development Program of China

Publisher

Hindawi Limited

Subject

Modelling and Simulation

Reference35 articles.

1. Coal mine safety regulation;National Coal Mine Safety Administration,2020

2. Current situation of coal mine gas disasters in China and countermeasures;Q. G. Sun;China Coal,2014

3. Analysis method of gas warning results of coal mine safety monitoring and control system;C. Cai;Industry and Mine Automation,2018

4. Qualitative and quantitative differences between common occupational health risk assessment models in typical industries

5. Risk analysis and assessment methodologies in the work sites: On a review, classification and comparative study of the scientific literature of the period 2000–2009

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3