Trajectory Planning and Collision Control of a Mobile Robot: A Penalty-Based PSO Approach

Author:

Pandey Krishna Kant1ORCID,Kumbhar Chandrashekhar2,Parhi Dayal R.3,Mathivanan Sandeep Kumar4,Jayagopal Prabhu4,Haque Aminul5ORCID

Affiliation:

1. Department of Mechatronics Engineering, Manipal University Jaipur, Jaipur 303007, Rajasthan, India

2. Learning Facilitator, Educlass Pvt. Ltd., Singapore 408601, Singapore

3. Mechanical Engineering Department, National Institute of Technology, Rourkela, Odisha 769008, India

4. School of Information Technology and Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India

5. Department of Computer Science and Engineering, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh

Abstract

In this paper, trajectory planning and navigation control problems have been addressed for a mobile robot. To achieve the objective of the research, an adaptive PSO (Particle Swarm Optimization) motion algorithm is developed using a penalty-based methodology. To deliver the best or collision-free position to the robot, fitness values of the all-random-positioned particles are compared at the same time during the target search action. By comparing the fitness values, the robot occupies the best position in the search space till it reaches the target. The new work integrated with conventional PSO is varying a velocity event that plays a vital role during the position acquisition (continuous change in position during the obstacle negotiation with the communication through random-positioned particles). The obstacle-negotiating angle and positional velocity of the robot are considered as input parameters of the controller whereas the robot's best position according to the target position is considered as the output of the controller. Simulation results are presented through the MATLAB environment. To validate simulation results, real-time experiments have been conducted in a similar workspace. The results of the adaptive PSO technique are also compared with the results of the existing navigational techniques. Improvements in results between the proposed navigation technique and existing navigation techniques are found to be 4.66% and 11.30%, respectively.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3