Model Experimental Study on Stress Transfer and Redistribution in a Clay Landslide under Surcharge Load

Author:

Hou Heng-Jun12ORCID,Wang Bo12ORCID,Deng Quan-Xiang12,Zhu Zheng-Wei12ORCID,Xiao Feng123

Affiliation:

1. School of Civil Engineering of Chongqing University, Chongqing 400045, China

2. Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University), Ministry of Education, Chongqing 400045, China

3. CCTEG Chongqing Engineering Co., Ltd., Chongqing 400016, China

Abstract

Stress transfer and redistribution always accompany with the evolution of landslides. However, previous literature studies have mainly focused on stages of stress variation, and far too little attention has been paid to detailed transfer and redistribution process analysis on stress variation. In this paper, a large-scale clay model slope with masonry slide bed and prefabricated cambered slip surface was constructed. Earth pressure cells were embedded into slip mass to monitor vertical and horizontal stresses in different parts of the test soils under the set load sequence. Stress transfer efficiency (STE) indicators based on qualified stress monitoring datasets (tested by Shapiro-Wilk method) were established to quantify the stress transfer process. Staged development of stress inside the clay slope was analyzed through extracting slopes of stress curves and limit loads. The stress redistribution process was analyzed using STE and deflection of stress isolines derived from numerical simulation. Moreover, to study the influence of loading position on stress variation, geometry partitioning has also been discussed. Results showed that vertical and horizontal stresses had different growth trends on both sides of 80 kN and 60 kN, respectively. Horizontal stress growth has two stages; vertical stress growth has two stages in soils close to slope surface and shear outlet, while there are three stages in other soils. Vertical stress transfer efficiency (VSTE) and horizontal stress transfer efficiency (HSTE) are recommended to quantify stress transfer and redistribution process. Based on VSTEs and HSTEs, the slip mass could be partitioned into three parts: loading zone, transfer zone, and free zone. Deflecting amplitudes of stress isolines were in consistency with the results revealed by STEs.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3