In Situ Experimental Study of Natural Diatomaceous Earth Slopes under Alternating Dry and Wet Conditions

Author:

Deng Zhixing,Wang Wubin,Yan Tengfei,Xie Kang,Li Yandong,Liu Yangyang,Su Qian

Abstract

Very few studies have focused on diatomaceous earth slopes along high-speed railways, and the special properties of diatomaceous earth under alternating dry and wet conditions are unknown. This paper studies diatomaceous earth in the Shengzhou area, through which the newly built Hangzhou–Taizhou high-speed railway passes, and the basic physical and hydraulic properties of diatomaceous earth are analyzed by indoor test methods. A convenient, efficient, and controllable high-speed railway slope artificial rainfall simulation system is designed, and in situ comprehensive monitoring and fissure observation are performed on site to analyze the changes in various diatomaceous soil slope parameters under rainfall infiltration, and to explore the cracking mechanisms of diatomaceous earth under alternating dry and wet conditions. The results indicate extremely poor hydrophysical properties of diatomaceous earth in the Shengzhou area; the disintegration resistance index values of natural diatomaceous earth samples subjected to dry and wet cycles are 1.8–5.6%, and the disintegration is strong. Comprehensive indoor tests and water content monitoring show that natural diatomaceous earth has no obvious influence when it contacts water, but it disintegrates and cracks under alternating dry and wet conditions. The horizontal displacement of both slope types mainly occurs within 0.75–2.75 m of the surface layer, indicating shallow surface sliding; after testing, natural slope crack widths of diatomaceous earth reach 10–25 mm, and their depths reach 40–60 cm. To guarantee safety during high-speed railway engineering construction, implementing proper protection for diatomaceous earth slopes is recommended.

Funder

China Railway Construction Co., Ltd.

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3