Author:
Deng Zhixing,Wang Wubin,Yan Tengfei,Xie Kang,Li Yandong,Liu Yangyang,Su Qian
Abstract
Very few studies have focused on diatomaceous earth slopes along high-speed railways, and the special properties of diatomaceous earth under alternating dry and wet conditions are unknown. This paper studies diatomaceous earth in the Shengzhou area, through which the newly built Hangzhou–Taizhou high-speed railway passes, and the basic physical and hydraulic properties of diatomaceous earth are analyzed by indoor test methods. A convenient, efficient, and controllable high-speed railway slope artificial rainfall simulation system is designed, and in situ comprehensive monitoring and fissure observation are performed on site to analyze the changes in various diatomaceous soil slope parameters under rainfall infiltration, and to explore the cracking mechanisms of diatomaceous earth under alternating dry and wet conditions. The results indicate extremely poor hydrophysical properties of diatomaceous earth in the Shengzhou area; the disintegration resistance index values of natural diatomaceous earth samples subjected to dry and wet cycles are 1.8–5.6%, and the disintegration is strong. Comprehensive indoor tests and water content monitoring show that natural diatomaceous earth has no obvious influence when it contacts water, but it disintegrates and cracks under alternating dry and wet conditions. The horizontal displacement of both slope types mainly occurs within 0.75–2.75 m of the surface layer, indicating shallow surface sliding; after testing, natural slope crack widths of diatomaceous earth reach 10–25 mm, and their depths reach 40–60 cm. To guarantee safety during high-speed railway engineering construction, implementing proper protection for diatomaceous earth slopes is recommended.
Funder
China Railway Construction Co., Ltd.
National Natural Science Foundation of China
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献