Affiliation:
1. Zhengzhou Shengda University, Zhengzhou, Henan 451191, China
Abstract
College English translation instruction is an important part of developing students’ English application skills. The generation network in GAN (generative adversarial network) is combined with reinforcement learning technology in this paper to create a basic text generation model that solves the problem that the original GAN model cannot handle discrete data. The correctness of students’ English translation ability is analyzed using a neural network model trained by PSO (particle swarm optimization), which can help teachers estimate students’ translation ability and provide a reference for the next teaching. The results show that the proposed model’s accuracy rate is clearly higher than the comparison model’s, with a maximum accuracy rate of over 85%. The findings indicate that this research model has the potential to improve the quality of English translation instruction.
Subject
Computer Networks and Communications,Computer Science Applications
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献