Developing a fuzzy comprehensive assessment model for English translation for college studentso

Author:

Huang Yang

Abstract

College students are learning a foreign language must know how to translate the spoken or written content from the respective language into English. These approaches do not help the college students to develop the capacity for rational thinking and adequate the motivation for the English translation. The educational principles are not in line with the qualities of the students in the typical English translation classroom teaching, and the teaching methods are out-dated. In the older process of the teaching English translation, many unreliable, vague aspects need to be considered, such as recognizing students’ fundamental English knowledge, unique circumstances, language proficiency, cultural differences, and the ambiguity of the source language. The main issue with the current English translation evaluation methodology is that it cannot be easily to deal with thecomplex fuzzy indices when judging the accuracy of the student translations. An algorithm named FCAM-AHP-ANFIS is proposed to provide an effective and accurate method for evaluating and predicting students’ English translation outcomes to overcome the traditional shortcomings. According to the proposed approach, students can learn about passive translation, but they may struggle to actively improve their translation skills. College students can benefit from the decision-making aid provided by the extensive evaluation technique due to its high availability and precision. The fundamental benefit of the fuzzy technique over more traditional forms of the assessment is that it accounts for the ambiguity and uncertainty of the making judgments at the human level and provides a coherent framework that includes the indistinct findings of the several steps in evaluating an English translation. The Fuzzy Comprehensive Assessment Model (FCAM) is a decision-making method that uses the fuzzy logic to assess the quality of English translations among the college students. The Analytic Hierarchy Process (AHP) is employed to calculate each criterion’s relative importance and determine the optimal weighting for each criterion utilized in the assessment model. The Adaptive Neuro-Fuzzy Inference System (ANFIS) is used to analyze the translated data and generate predictions for the students’ translation outcomes. The experimental outcomes show the accuracy of the English translation assessment scores are 95.6% with 97% precision, 96% recall, and 96.5% of f1-score metric in addition to Root Mean Square (RMSE) and Mean Absolute Error (MAE).

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3