Affiliation:
1. School of Traffic and Transportation, Beijing Jiaotong University, Beijing, China
Abstract
A good timetable is required to not only be efficient, but also yield effectiveness in preventing and counteracting delays. When travelling via urban rail transit networks, transferring passengers may miss their scheduled connecting train because of a feeder train delay that results in them experiencing increased travel costs. Considering that running time supplements and transfer buffer times yield different effects on the travel plans of transferring and nontransferring passengers, we formulate an expected extra travel cost (EETC) function to appropriately balance efficiency and robustness, which is then implemented in the construction of a robust transfer optimization model with the objective of minimizing the total EETC. Next, to improve the computational efficiency, we propose an approximate linearization approach for the EETC function and introduce two types of binary variables and auxiliary substitution variables to convert the nonlinear model to a mixed-integer linear model. Experimental results show that our proposed method can yield practically applicable solutions with significant reductions in both EETC and probability of missing a transfer.
Funder
Fundamental Research Funds for the Central Universities
Subject
Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献