Affiliation:
1. Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Hainan 572000, China
2. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract
To meet the changing real-time edge engineering application requirements of CNN, aiming at the lack of universality and flexibility of CNN hardware acceleration architecture based on ARM+FPGA, a general low-power all pipelined CNN hardware acceleration architecture is proposed to cope with the continuously updated CNN algorithm and accelerate in hardware platforms with different resource constraints. In the framework of the general hardware architecture, a basic instruction set belonging to the architecture is proposed, which can be used to calculate and configure different versions of CNN algorithms. Based on the instruction set, the configurable computing subsystem, memory management subsystem, on-chip cache subsystem, and instruction execution subsystem are designed and implemented. In addition, in the processing of convolution results, the on-chip storage unit is used to preprocess the convolution results, to speed up the activation and pooling calculation process in parallel. Finally, the accelerator is modeled at the RTL level and deployed on the XC7Z100 heterogeneous device. The lightweight networks YOLOv2-tiny and YOLOv3-tiny commonly used in engineering applications are verified on the accelerator. The results show that the peak performance of the accelerator reaches 198.37 GOP/s, the clock frequency reaches 210 MHz, and the power consumption is 4.52 w under 16-bit width.
Funder
National Key Research and Development Plan of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献