Resource Allocation in Multicore Elastic Optical Networks: A Deep Reinforcement Learning Approach

Author:

Pinto-Ríos Juan1ORCID,Calderón Felipe1ORCID,Leiva Ariel1ORCID,Hermosilla Gabriel1ORCID,Beghelli Alejandra2ORCID,Bórquez-Paredes Danilo3ORCID,Lozada Astrid4ORCID,Jara Nicolás4ORCID,Olivares Ricardo4ORCID,Saavedra Gabriel5ORCID

Affiliation:

1. School of Electrical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2950, Valparaíso 2362804, Chile

2. Optical Networks Group, Department of Electronic and Electrical Engineering, University College London, WC1E 7JE, London, UK

3. Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Av. Padre Hurtado 750, Viña Del Mar 2562, 340, Chile

4. Department of Electronic Engineering, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso 2390123, Chile

5. Electrical Engineering Department, Universidad de Concepción, Víctor Lamas 1290, Concepción 4070409, Chile

Abstract

A deep reinforcement learning (DRL) approach is applied, for the first time, to solve the routing, modulation, spectrum, and core allocation (RMSCA) problem in dynamic multicore fiber elastic optical networks (MCF-EONs). To do so, a new environment was designed and implemented to emulate the operation of MCF-EONs - taking into account the modulation format-dependent reach and intercore crosstalk (XT) - and four DRL agents were trained to solve the RMSCA problem. The blocking performance of the trained agents was compared through simulation to 3 baselines RMSCA heuristics. Results obtained for the NSFNet and COST239 network topologies under different traffic loads show that the best-performing agent achieves, on average, up to a four-times decrease in blocking probability with respect to the best-performing baseline heuristic method.

Funder

DI-PUCV

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Reference63 articles.

1. Cisco visual networking index: global mobile data traffic forecast update;C. W. Paper,2018

2. State of the networks;TeleGeography,2022

3. Sandvine: Google, facebook, microsoft, apple, amazon & netflix generate almost 57% of internet traffic;A. Weissberger,2021

4. Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies

5. Dense Space-Division Multiplexed Transmission Systems Using Multi-Core and Multi-Mode Fiber

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic Multicore Elastic Optical Networks: A Comparative Study of Performance using Heuristics and Artificial Intelligence;2024 24th International Conference on Transparent Optical Networks (ICTON);2024-07-14

2. Deep-reinforcement-learning-based RMSCA for space division multiplexing networks with multi-core fibers [Invited Tutorial];Journal of Optical Communications and Networking;2024-05-10

3. Analytical Modeling of Groups of Links in Elastic Optical Networks;IEEE Access;2024

4. Inter-Core Crosstalk Aware Deep Reinforcement Learning Based Resource Allocation in Multicore Elastic Optical Networks;2023 Asia Communications and Photonics Conference/2023 International Photonics and Optoelectronics Meetings (ACP/POEM);2023-11-04

5. Routing and Spectrum Assignment Based on Reinforcement Learning in Multi-Band Optical Networks;2023 International Conference on Photonics in Switching and Computing (PSC);2023-09-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3