Deep-reinforcement-learning-based RMSCA for space division multiplexing networks with multi-core fibers [Invited Tutorial]

Author:

Teng Yiran1ORCID,Natalino CarlosORCID,Li Haiyuan1,Yang Ruizhi1ORCID,Majeed Jassim1,Shen Sen1,Monti PaoloORCID,Nejabati Reza1,Yan Shuangyi1ORCID,Simeonidou Dimitra1

Affiliation:

1. University of Bristol

Abstract

The escalating demands for network capacities catalyze the adoption of space division multiplexing (SDM) technologies. With continuous advances in multi-core fiber (MCF) fabrication, MCF-based SDM networks are positioned as a viable and promising solution to achieve higher transmission capacities in multi-dimensional optical networks. However, with the extensive network resources offered by MCF-based SDM networks comes the challenge of traditional routing, modulation, spectrum, and core allocation (RMSCA) methods to achieve appropriate performance. This paper proposes an RMSCA approach based on deep reinforcement learning (DRL) for MCF-based elastic optical networks (MCF-EONs). Within the solution, a novel state representation with essential network information and a fragmentation-aware reward function were designed to direct the agent in learning effective RMSCA policies. Additionally, we adopted a proximal policy optimization algorithm featuring an action mask to enhance the sampling efficiency of the DRL agent and speed up the training process. The performance of the proposed algorithm was evaluated with two different network topologies with varying traffic loads and fibers with different numbers of cores. The results confirmed that the proposed algorithm outperforms the heuristics and the state-of-the-art DRL-based RMSCA algorithm in reducing the service blocking probability by around 83% and 51%, respectively. Moreover, the proposed algorithm can be applied to networks with and without core switching capability and has an inference complexity compatible with real-world deployment requirements.

Funder

CSA Catapult - University of Bristol collaboration project

VINNOVA

China Scholarship Council

Publisher

Optica Publishing Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unified Monitoring and Telemetry Platform for Future Intelligent Optical Networks;2024 24th International Conference on Transparent Optical Networks (ICTON);2024-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3