Minimizing the Discrepancy between Simulated and Historical Failures in Turbine Engines: A Simulation-Based Optimization Method

Author:

Kibria Ahmed1,Castillo-Villar Krystel K.1,Millwater Harry1

Affiliation:

1. Mechanical Engineering Department, The University of Texas at San Antonio, San Antonio, TX 78249, USA

Abstract

The reliability modeling of a module in a turbine engine requires knowledge of its failure rate, which can be estimated by identifying statistical distributions describing the percentage of failure per component within the turbine module. The correct definition of the failure statistical behavior per component is highly dependent on the engineer skills and may present significant discrepancies with respect to the historical data. There is no formal methodology to approach this problem and a large number of labor hours are spent trying to reduce the discrepancy by manually adjusting the distribution’s parameters. This paper addresses this problem and provides a simulation-based optimization method for the minimization of the discrepancy between the simulated and the historical percentage of failures for turbine engine components. The proposed methodology optimizes the parameter values of the component’s failure statistical distributions within the component’s likelihood confidence bounds. A complete testing of the proposed method is performed on a turbine engine case study. The method can be considered as a decision-making tool for maintenance, repair, and overhaul companies and will potentially reduce the cost of labor associated to finding the appropriate value of the distribution parameters for each component/failure mode in the model and increase the accuracy in the prediction of the mean time to failures (MTTF).

Funder

Air Force Research Laboratory

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3