Efficient Numerical Integration Algorithm of Probabilistic Risk Assessment for Aero-Engine Rotors Considering In-Service Inspection Uncertainties

Author:

Li Guo,Liu JunboORCID,Zhou HuiminORCID,Zuo Liangliang,Ding Shuiting

Abstract

Numerical integration methods have the characteristics of high efficiency and precision, making them attractive for aero-engine probabilistic risk assessment and design optimization of an inspection plan. One factor that makes the numerical integration method a suitable approach to in-service inspection uncertainties is the explicit derivation of the integration formula and integration domains. This explicit derivation ensures accurate characterization of a multivariable system’s failure risk evolution mechanism. This study develops an efficient numerical integration algorithm for probabilistic risk assessment considering in-service inspection uncertainties. The principle of probability conservation is applied to the transformation of the integration domain from the current flight cycle to the initial (N = 0) computational space. Consequently, the integration formula of failure probability is deduced, and a detailed mathematical demonstration of the proposed method is provided. An actual compressor disk is evaluated using the efficient numerical integration algorithm and the Monte Carlo simulation to validate the accuracy and efficiency of the proposed method. Results show that the time cost of the proposed algorithm is dozens of times lower than that of the Monte Carlo simulation, with a maximum relative error of 5%. Thus, the efficient numerical integration algorithm can be applied to failure analysis in the airworthiness design of commercial aero-engine components.

Funder

Civil Aviation Administration of China

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference36 articles.

1. New Methods for Automated Fatigue Crack Growth and Reliability Analysis;Mcclung,2012

2. Damage Tolerance and Reliability of Turbine Engine Components: National Aeronautics and Space Administration;Chamis,1999

3. Probabilistic Approach to Damage Tolerance Design of Aircraft Composite Structures

4. Probabilistic Methods for Design Assessment of Reliability with Inspection

5. Advisory Circular 33.70-1. Guidance Material for Aircraft Engine-Life-Limited Parts Requirements;Federal Aviation Administration,2009

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3