Characterization of TiZrN and TaZrN Nanocomposite Multilayer Coating Deposited via RF/DC Magnetron Sputtering on AISI4140 Steel

Author:

Hariharan R.1ORCID,Raja R.2,Golden Renjith Nimal R. J.3,Refaai Mohamad Reda A.4,Ravi S5,Allasi Haiter Lenin6ORCID

Affiliation:

1. Department of Mechanical Engineering, Bharath Institute of Higher Education and Research, Chennai-73, Tamilnadu, India

2. VPMM Engineering College for Women, Srivilliputhur 626190, Tamilnadu, India

3. Department of Mechanical Engineering, Jai Shriram Engineering College, Tirupur-638660, Tamilnadu, India

4. Prince Sattam Bin Abdulaziz University, College of Engineering Department of Mechanical Engineering, Alkharj 16273, Saudi Arabia

5. Centre for Materials Research, Chennai Institute of Technology, Chennai 600069, Tamilnadu, India

6. Department of Mechanical Engineering, Wollo University Kombolcha Institute of Technology, Kombolcha, Ethiopia

Abstract

In this present research work, TiZrN and TaZrN multilayer coating was deposited on 4140 steel by RF/DC magnetron sputtering for comparative work also prepared in single layer. The flow rate ratio of Ar/N2 was set to 15 : 3 sccm and the thin film was prepared by the PVD (physical vapor deposition) method by RF/DC magnetron using a Ti-Zr and Ta-Zr target with a purity of 99.99%. The crystal structure, surface morphology microstructure, and component arrangements were explored by X-ray diffraction (XRD), scanning electron microscope (SEM), and atomic force microscopy (AFM). It has been found that the crystal structure, surface morphology, microstructure, and elemental composition of the membrane are strongly dependent on deposition parameters. It is mechanically characterized by corrosion and Vickers hardness. In AFM measurements, coarse cluster particles with increasing Ti and Ta values not only increase the average roughness (Ra) by 2.341 nm (200°C) and 2.951 nm (400°C) but also have a continuous average thickness which was shown to increase by 1.504 nm and 781.75 nm. With the increase of hardness, the roughness decreases correspondingly. The TiZrN multilayer microhardness augmented to 314 GPa at 200°C and 371 GPa for TaZrN (400°C).

Funder

Prince Sattam Bin Abdulaziz University

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3