Affiliation:
1. Mathematics and Computer Science Department, Faculty of Science, Menoufia University, Shebin Elkom 32511, Egypt
2. Faculty of Computer and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Abstract
We consider, in this paper, the NP-hard problem of finding the minimum connected domination metric dimension of graphs. A vertex set B of a connected graph G = (V, E) resolves G if every vertex of G is uniquely identified by its vector of distances to the vertices in B. A resolving set B of G is connected if the subgraph
induced by B is a nontrivial connected subgraph of G. A resolving set is dominating if every vertex of G that does not belong to B is a neighbor to some vertices in B. The cardinality of the smallest resolving set of G, the cardinality of the minimal connected resolving set, and the cardinality of the minimal connected domination resolving set are the metric dimension of G, connected metric dimension of G, and connected domination metric dimension of G, respectively. We present the first attempt to compute heuristically the minimum connected dominant resolving set of graphs by a binary version of the equilibrium optimization algorithm (BEOA). The particles of BEOA are binary-encoded and used to represent which one of the vertices of the graph belongs to the connected domination resolving set. The feasibility is enforced by repairing particles such that an additional vertex generated from vertices of G is added to B, and this repairing process is iterated until B becomes the connected domination resolving set. The proposed BEOA is tested using graph results that are computed theoretically and compared to competitive algorithms. Computational results and their analysis show that BEOA outperforms the binary Grey Wolf Optimizer (BGWO), the binary Particle Swarm Optimizer (BPSO), the binary Whale Optimizer (BWO), the binary Slime Mould Optimizer (BSMO), the binary Grasshopper Optimizer (BGO), the binary Artificial Ecosystem Optimizer (BAEO), and the binary Elephant Herding Optimizer (BEHO).
Subject
Computer Science Applications,Software
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献