Vibration Signal Analysis of Water Seal Blasting Based on Wavelet Threshold Denoising and HHT Transformation

Author:

Liu Jiang-chao1,Gao Wen-xue1ORCID

Affiliation:

1. College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China

Abstract

The blasting vibration signal obtained from tunnel construction monitoring is affected by the external environment, which contains a lot of noise that causes distortion during signal processing. To analyse the blasting vibration signal and determine the appropriate water seal blasting charge structure for construction, combined with wavelet threshold denoising method and HHT transformation, the blasting vibration signals of the four charge structures of conventional charge, water interval charge at both ends, water interval charge at the orifice, and water interval charge at the hole bottom are denoised and HHT is analysed. The results show that the wavelet threshold method can effectively eliminate high-frequency noise in the blasting vibration signals and retain information carried by the vibration signal itself. The frequency and energy of the blasting vibration signals of the water interval charge at both ends are densely distributed in the range of 0 s to 0.9 s and below 100 Hz. The frequency and energy of the blasting signals of the other three charging structures are reduced within the same range, sparse areas appear, and the instantaneous total energy is smaller than that with a water interval charge at both ends, which shows that the water interval charge at both ends can effectively apply explosive energy to the surrounding rock and reduce energy loss in the explosive. The blasting vibration signal energy of the water interval charge at both ends is mainly concentrated in components IMF2 to IMF5, and the corresponding frequencies are concentrated at 6 Hz to 11 Hz and 20 Hz to 70 Hz, while the blasting vibration signal energy of other three charge structures is mainly distributed in components IMF2 to IMF4, corresponding frequencies are concentrated within 20 Hz to 70 Hz, and the distribution at low frequencies is not obvious. Therefore, when using the water interval charge at both ends, it is necessary to increase the main vibration frequency of the original vibration signals by reducing the single section charge and using frequency shift technology to avoid the natural frequency of the structure and reduce resonance-induced damage.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3