A novel motor fault diagnosis method based on principal component analysis (PCA) with a discrete belief rule base (DBRB) system

Author:

Yu HangORCID,Gao HaiboORCID,He Yelan,Lin Zhiguo,Xu Xiaobin

Abstract

Abstract Motor vibration signal data sets are characteristically random and nonlinear, and its features are difficult to extract for fault identification. To reduce the uncertainty of fault diagnosis, a method based on principal component analysis (PCA) and discrete belief rule base (DBRB) was developed for the first time. Initially, the vibration signal was first denoised using a wavelet threshold algorithm to eliminate interference. Second, overlapping signals were segmented into 15 time windows and a total of 13 typical time domain features and mathematical statistical features were extracted. Third, the dimensions of the features were reduced to three principal components by PCA and were taken as the antecedent attributes of the DBRB. However, the amount of information in each principal component is different, so the variance contribution rate was taken as an antecedent attribute weight to restore the original data characteristics. Fourth, a PCA-DBRB model was established, which effectively avoided the combinatorial explosion problem of rule base in the DBRB model. In addition, to obtain appropriate reference values, the k-means algorithm was introduced to take the cluster centers as reference values. The method was then validated by collecting typical fault data from motor bench experiments. The results demonstrated that compared with other traditional classifiers, this approach is more effective and superior in classification performance and more accurate in diagnosing faults from motor vibration data.

Funder

The National Natural Science Foundation of China (NSFC)-Zhejiang Joint Fund for the Integration of Industrialization and Informatization

Zhejiang outstanding youth fund

Zhejiang Province Key R&D projects

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3