Finite Mixture of the Hidden Markov Model for Driving Style Analysis

Author:

Ding Lusa1ORCID,Zhu Ting1,Wang Yanli1ORCID,Zou Yajie1ORCID

Affiliation:

1. Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai 201804, China

Abstract

Analyzing driving style is useful for developing intelligent vehicles. Previous studies usually consider the statistical features (e.g., the means and standard deviations of brake pressure) of the measured driving data or manually define the number of patterns divided by behavior semantics to characterize driving styles. In this paper, we propose a driving style analysis to describe the personalized driving styles from time-series driving data without specifying the levels in advance but by estimating them from the data. First, range, range rate, and acceleration are selected as three feature variables to describe car-following scenarios. Then, the car-following data are normalized to reduce the scale influence of different variables on the segmentation results. The hidden Markov model (HMM) and the finite mixture of the hidden Markov model (MHMM) are adopted to extract behavior semantics. Compared with the HMM, the MHMM can identify the heterogeneity of data and then provide more reasonable primitive driving patterns. Based on the results, this study uses the K-means clustering to label all the driving patterns semantically and identifies a total of 75 different driving patterns. We use the normalized frequency distributions to describe personalized driving behavior characteristics, and similarity evaluations of driving styles are applied using the Kolmogorov–Smirnov test. The proposed approach in this paper is useful for exploring the characteristics of driving habits.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Game-Based Hierarchical Model for Mandatory Lane Change of Autonomous Vehicles;IEEE Transactions on Intelligent Transportation Systems;2024-09

2. Driving Style Recognition of Interacting Vehicles in Multiple Scenarios;2022 6th CAA International Conference on Vehicular Control and Intelligence (CVCI);2022-10-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3