Affiliation:
1. Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai 201804, China
Abstract
Analyzing driving style is useful for developing intelligent vehicles. Previous studies usually consider the statistical features (e.g., the means and standard deviations of brake pressure) of the measured driving data or manually define the number of patterns divided by behavior semantics to characterize driving styles. In this paper, we propose a driving style analysis to describe the personalized driving styles from time-series driving data without specifying the levels in advance but by estimating them from the data. First, range, range rate, and acceleration are selected as three feature variables to describe car-following scenarios. Then, the car-following data are normalized to reduce the scale influence of different variables on the segmentation results. The hidden Markov model (HMM) and the finite mixture of the hidden Markov model (MHMM) are adopted to extract behavior semantics. Compared with the HMM, the MHMM can identify the heterogeneity of data and then provide more reasonable primitive driving patterns. Based on the results, this study uses the K-means clustering to label all the driving patterns semantically and identifies a total of 75 different driving patterns. We use the normalized frequency distributions to describe personalized driving behavior characteristics, and similarity evaluations of driving styles are applied using the Kolmogorov–Smirnov test. The proposed approach in this paper is useful for exploring the characteristics of driving habits.
Funder
National Natural Science Foundation of China
Subject
Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Game-Based Hierarchical Model for Mandatory Lane Change of Autonomous Vehicles;IEEE Transactions on Intelligent Transportation Systems;2024-09
2. Driving Style Recognition of Interacting Vehicles in Multiple Scenarios;2022 6th CAA International Conference on Vehicular Control and Intelligence (CVCI);2022-10-28