Image Denoising Based on Adaptive Fractional Order with Improved PM Model

Author:

Yu Jimin1,Zhai Rumeng1ORCID,Zhou Shangbo23ORCID,Tan LiJian1

Affiliation:

1. Chongqing University of Posts and Telecommunications, Chongqing 400065, China

2. Chongqing Key Lab of Computer Network and Communication Technology, Chongqing 400065, China

3. Chongqing University, Chongqing 400044, China

Abstract

In order to improve the image quality, in this paper, we propose an improved PM model. In the proposed model, we introduce two novel diffusion coefficients and a residual error term and replace the integer differential operator with the fractional differential operator in the PM model. The diffusion coefficients can be used effectively for edge detection and noise removal. The residual error term can help to prevent image distortion. Fractional order differential operator has a good characteristic that it can enhance image texture information while removing image noise. Additionally, in the two new diffusion coefficients, a novel method is proposed for automatically setting parameter k, and it does not need to do any experiments to get the value of k. For the computing fractional order diffusion coefficient, we employ the discrete Fourier transform, and an iterative scheme is carried out in the frequency domain. In the proposed model, not only is the integer differential operator replaced with the fractional differential operator, but also the order of the fractional differentiation is determined adaptively with the local variance. Comparing with some existing models, the experimental results show that the proposed algorithm can not only better suppress noise, but also better preserve edge and texture information. Moreover, the running time is greatly reduced.

Funder

Fundamental Science and Frontier Technology Research of Chongqing CSTC

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3