Author:
Yu Jimin, ,Yin Jiajun,Zhou Shangbo,Huang Saiao,Xie Xianzhong, ,
Abstract
<abstract><p>The image denoising model based on anisotropic diffusion equation often appears the staircase effect while image denoising, and the traditional super-resolution reconstruction algorithm can not effectively suppress the noise in the image in the case of blur and serious noise. To tackle this problem, a novel model is proposed in this paper. Based on the original diffusion equation, we propose a new method for calculating the adaptive fidelity term and its coefficients, which is based on the relationship between the image gradient and the diffusion function. It is realized that the diffusion speed can be slowed down by adaptively changing the coefficient of the fidelity term, and it is proved mathematically that the proposed fractional adaptive fidelity term will not change the existence and uniqueness of the solution of the original model. At the same time, washout filter is introduced as the control item of the model, and a new model of image super-resolution reconstruction and image denoising is constructed. In the proposed model, the order of fractional differential will be determined adaptively by the local variance of the image. And we give the numerical calculation method of the new model in the frequency domain by the method of Fourier transform. The experimental results show that the proposed algorithm can better prevent the staircase effect and achieve better visual effect. And by introducing washout filter to act as the control of the model, the stability of the system can be improved and the system can converge to a stable state quickly.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Reference39 articles.
1. Q. Yang, Y. Zhang, T. Zhao, Example-based image super-resolution via blur kernel estimation and variational reconstruction, Pattern Recognit. Lett., 117 (2019), 83-89.
2. A. Laghrib, A. Hakim, S. Raghay, An iterative image super-resolution approach based on Bregman distance, Signal Proc. Image Commun., 58 (2017), 24-34.
3. A. Laghrib, A. Ghazdali, A. Hakim, S. Raghay, A multi-frame super-resolution using diffusion registration and a nonlocal variational image restoration, Comput. Math. Appl., 72 (2016), 2535-2548.
4. L. Wang, S. Zhou, K. Awudu, Image zooming technique based on the split Bregman iteration with fractional order variation regularization, Int. Arab J. Inf. Technol., 13 (2016), 944-950.
5. F. Kazemi Golbaghi, M. R. Eslahchi, M. Rezghi, Image denoising by a novel variable order total fractional variation model, Math. Methods Appl. Sci., 44 (2021), 7250-7261.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献