An image super-resolution reconstruction model based on fractional-order anisotropic diffusion equation

Author:

Yu Jimin, ,Yin Jiajun,Zhou Shangbo,Huang Saiao,Xie Xianzhong, ,

Abstract

<abstract><p>The image denoising model based on anisotropic diffusion equation often appears the staircase effect while image denoising, and the traditional super-resolution reconstruction algorithm can not effectively suppress the noise in the image in the case of blur and serious noise. To tackle this problem, a novel model is proposed in this paper. Based on the original diffusion equation, we propose a new method for calculating the adaptive fidelity term and its coefficients, which is based on the relationship between the image gradient and the diffusion function. It is realized that the diffusion speed can be slowed down by adaptively changing the coefficient of the fidelity term, and it is proved mathematically that the proposed fractional adaptive fidelity term will not change the existence and uniqueness of the solution of the original model. At the same time, washout filter is introduced as the control item of the model, and a new model of image super-resolution reconstruction and image denoising is constructed. In the proposed model, the order of fractional differential will be determined adaptively by the local variance of the image. And we give the numerical calculation method of the new model in the frequency domain by the method of Fourier transform. The experimental results show that the proposed algorithm can better prevent the staircase effect and achieve better visual effect. And by introducing washout filter to act as the control of the model, the stability of the system can be improved and the system can converge to a stable state quickly.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3