Transmission Scheme with Limited Channel State Information Feedback for 3D MIMO System

Author:

Li Xing1,Zhao Hui1,Zhao Long1ORCID,Zhao Wenxiu1,Zheng Senyao1

Affiliation:

1. Wireless Signal Processing & Network Lab, Key Lab of Universal Wireless Communications, Ministry of Education, Beijing University of Posts & Telecommunications, Beijing 100876, China

Abstract

Three-dimensional (3D) multiple-input multiple-output (MIMO) system can exploit the spatial degree of freedom in vertical dimension and can significantly improve system performance compared with 2D transmission scheme. However, in the actual frequency division duplex (FDD) transmission mode, the large overhead of the reference signal and channel state information (CSI) feedback would become a barrier for performance improvement of 3D MIMO system with the significantly increased number of transmit antennas. To deal with these problems, this paper proposes a new transmission scheme of the channel state information-reference signal (CSI-RS), where the CSI-RS is precoded with 3D beamforming vectors and composed of two components: long-term CSI-RS and short-term CSI-RS. For the purpose of conducting efficient transmission in widely used FDD system, we also propose a corresponding limited channel state information feedback scheme. Moreover, multiuser pairing and scheduling criteria based on the design of the CSI-RS are proposed to realize the multiuser transmission. We have investigated multiple options for 3D MIMO codebook scheme and finally adopt the Kronecker product-based codebook (KPC) for precoding operation at the base station (BS). Simulation results demonstrate that our proposed scheme for the 3D MIMO system achieves a better tradeoff between resource overhead and throughput performance.

Funder

National Key Technology R&D Program of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3