Spectral Efficiency of the Multiway Massive System over Rician Fading Channels

Author:

He Junyi1ORCID,Zhang Junnan1ORCID,Song Cheng1ORCID,Wu Mengxiang1ORCID

Affiliation:

1. College of Computer Science and Technology, Henan Polytechnic University, 454000 Jiaozuo, Henan, China

Abstract

In this study, we consider a multiway massive multi-input multi-output (MIMO) relay network over Rician fading channels, where all users intend to share their information with the other users via amplify-and-forward (AF) relays equipped with a great number of antennas. More practical, the imperfect channel state information (CSI) is taken into account. To evaluate the performance of the considered networks, we derived an analytical approximation expression for the spectral efficiency with zero-forcing (ZF) receivers in a closed form. To obtain more insights, the asymptotic analysis as the number of relay antenna approaching infinity is carried out. Finally, the power scaling law is analyzed for two scenarios. The results reveal that (1) massive MIMO is capable of compensating the loss caused by Rician fading, (2) the sum spectral efficiency increases with the increase of the Rician factor, and (3) deploying large-scale antenna is effective to save cost and keep performance.

Funder

Key Scientific and Technological Projects in Henan Province, China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Reference24 articles.

1. Massive MIMO: An Introduction

2. UAV-aided multi-way NOMA networks with residual hardware impairments;X. Li;IEEE Wireless Communications Letters,2020

3. Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas

4. How to scale up the spectral efficiency of multi-way massive MIMO relaying?;C. D. Ho;IEEE International Conference on Communications IEEE,2018

5. Massive MIMO for next generation wireless systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3