Innovative Design of Replacement Device for Vulnerable Parts in the Nuclear Radiation Environment

Author:

Li Qin1ORCID,Zhao Wu1ORCID,Zheng Lan-jiang2,Chen Ling1,Zhang Kai1,Guo Xin1ORCID

Affiliation:

1. School of Manufacturing Science and Engineering, Sichuan University, Chengdu 610065, China

2. Nuclear Power Institute of China, Chengdu 610065, China

Abstract

Vigorously developing nuclear power is the main development direction of current renewable energy. In the nuclear environment, in order to avoid nuclear radiation damage to maintenance personnel and improve the efficiency of nuclear reaction, it is necessary and urgent to realize automatic replacement of vulnerable parts in the electron gun. As the key equipment for the generation and control of nuclear reactions in nuclear reactors, electron guns have been widely used in nuclear power plants of traveling wave reactors. However, the “high-voltage conductive ring” in electron guns is a vulnerable part. It is likely to cause nuclear reactor accidents when the vulnerable part is damaged. Automatic replacement of vulnerable parts is an important part of the entire maintenance equipment. Considering the entire maintenance equipment and the working environment, an innovative design process for vulnerable parts replacement is established. Under the guidance of the process, in order to ensure the continuity of a series of maintenance actions, the technical contradiction resolution theory is first used to conduct the overall analysis of the general direction to obtain the design layout. Then, the contradiction resolution theory and the object-field model analysis are utilized to get and improve the detailed design of the device mechanism. The theory of TRIZ can help us to get the overall mechanical structure design that meets the engineering requirements. The device is designed with a replacement part adjustment scheme to ensure the completion of the maintenance actions. Furthermore, the design provides a solution to the possible jamming phenomenon in the automatic maintenance process and achieves the maximum use efficiency of the storage and replacement of vulnerable parts.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Nuclear Energy and Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3